洋楽の歌詞データでDoc2vecを実行してみる

はじめに

仕事で記事間の類似度計算などがあったりするんですが、TF-IDFにしてCOS類似度を計算するなどの方法で行っているのが現状です。そろそろ他の手法にも移行したいので、それに変わる類似度計算の手段としてDoc2vecを試してみたいと思います。

データ

以前より収集している洋楽の歌詞データを用います。Billboardのランキングに登場した楽曲の歌詞データを961曲分集めたものとなります。英語なので、日本語のように形態素解析は不要ですが、ストップワードを除去するなどの処理を施したコーパスを用います。Rのtmパッケージによるストップワードの除去についてはBillboard100位以内の楽曲の歌詞情報にLDAを適用してみたをご覧ください。日本語でのDoc2Vecの適用は参考文献において紹介しています。

類似度計算

TaggedLineDocumentを用いて、doc2vecで扱えるオブジェクトを作成します。TaggedLineDocumentに指定するファイルは主にtxtファイルで、その満たすべき条件は「1行につき1文書」「単語がスペースで区切られている」などです。あとは、doc2vecを実行するだけです。パラメータなどの細かい指定については今後の宿題としたいです。

類似度の算出

早速、気になる楽曲に関して、類似度の高い楽曲を抽出してみたいと思います。

どうやら、Radioactiveという曲はkings of leonというグループも歌っているようですが、私はimagine dragonsの方の楽曲に関心がありますので、インデックスを409にして歌詞情報の近い楽曲を抽出します。

どうやら、toby keithのMade In Americaという楽曲が最も近いようです。類似度は35%程度ですが、全然単語が被っていないので本当に近いのか納得がいかないです。

次に、lady gagaのBorn This Wayに近い楽曲を出してみます。Dancing Queenという非常に懐かしい曲が選ばれていますが、類似度は49%と先ほどよりも高いです。queenやgirlやcanやrightなど共通の単語が含まれているので、先ほどの結果よりは近いのかなぁと思います。

正しく推定できているのか不安だったので、類似度が90%と非常に高かった、Just The Way You Areという楽曲の最も近い楽曲を見てみます。

調べたところ、同じ楽曲のカバー版のようです。近いものは、ちゃんと近いと見なせるようです。近いかどうかの基準をどの水準に置くのかは難しい判断ですね。

参考情報

models.doc2vec – Deep learning with paragraph2vec
Doc2Vecの仕組みとgensimを使った文書類似度算出チュートリアル
Pythonによるデータ分析入門 ―NumPy、pandasを使ったデータ処理

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です