データアナリストがBIダッシュボードのお手伝いをする前の調べ物

はじめに

これまで、データ分析・機械学習などの知識を重点的に学んできたので、BI周りはかなり疎かになっていました。今の知識のままではBI案件のお手伝いが大変だなと思ったので、少しはリソースを割いて勉強していこうと思います。今回はコードも何も出てこない内容なので、データサイエンティストの方はそっ閉じで良いと思います。
海外のブログで、“12 Best Business Intelligence Books To Get You Off the Ground With BI”という記事があり、”Performance Dashboards: Measuring, Monitoring, and Managing Your Business (English Edition)“という書籍が紹介されていました。それについてわかりやすくまとめられたスライドがあったので、2006年と古いですが、何もBIを知らないものとしては非常に勉強になると思い、訳して自分のための忘備録としておきます。

目次

・パフォーマンスダッシュボード
・ダッシュボードの不満
・パフォーマンスダッシュボードの2つの原則
・戦術的なドライバー
・戦略的なドライバー
・パフォーマンスダッシュボードは何で構成されるか
・おわりに

パフォーマンスダッシュボード

  • ダッシュボード
  • パフォーマンスチャート
    からなる

ダッシュボードの不満

意思決定を阻害するもの

  • データが多すぎる
  • 情報が少なすぎる
  • 届くのが遅すぎる

パフォーマンスダッシュボードの2つの原則

パフォーマンスダッシュボード = BI + 企業の経営マネジメント

(画像はPDFより拝借しております。)

  • 1.BI
    • 情報(DWH)
    • 知識(分析ツール)
    • 計画(ルール、モデル)
    • 行動(レビュー、計測、洗練)
    • 知恵
    • イベント発生→情報へ
      の繰り返し
  • 2.企業の経営マネジメント
    • 戦略(ミッション、バリュー、ゴール、目的、インセンティブ、戦略マップ)
    • 計画(予算、計画、見込み、モデル、イニシアティブ、ターゲット)
    • モニタリング、分析(パフォーマンスダッシュボード)
    • 行動、調整(行動、決定、見直し)

戦術的なドライバー

  • 利用者と共鳴する
    • 一つのスクリーンでいくつかの領域のステータスをモニタリングできる
    • 重要な指標のグラフ表示
    • 例外的な状況に関してアラートを上げる
    • クリックして分析し、詳細を深掘りできる
    • ルールに基づきカスタマイズされた表示
    • 訓練が要求されない
  • リッチなデータ
    • 複数の情報ソースからブレンドされたデータ
    • 詳細も集計値もある
    • 履歴もリアルタイムのデータもある
  • 労働者に力を与える
    • 本当に重要なことにユーザーを集中させる
    • 労働者の貢献がどのように集計されているかを示す
    • ゴール、競争、インセンティブで動機づけをする
    • プロアクティブな介入を促進する

戦略的なドライバー

  • ビジネスを調整する
    • 皆同じデータを使う
    • 皆同じ指標を使う
    • みな同じ戦略で働く
  • コミュニケーションの改善
    • コミュニケーション戦略のためのツール
    • マネジャーとスタッフのコラボレーション
    • 部門間のコーディネート
  • 視認性とコンプライアンスの向上
    • 驚きの少なさ
  • 戦略的なドライバーの5つのC
    • Communicate
    • Compare
    • Collaborate
    • Coordinate
    • Congratulate

パフォーマンスダッシュボードは何で構成されるか

  • 3つのアプリケーション
  • 情報の3つのレイヤー
  • パフォーマンスダッシュボードの3つのタイプ

3つのアプリケーション

  • モニタリング
  • 分析 
  • コラボレーション


(画像はPDFより拝借しております。)

情報の3つのレイヤー


(画像はPDFより拝借しております。)

  • モニタリング:グラフ、図形、チャート
  • 分析:ディメンション、階層、細かく分割
  • レポーティング:DWHのクエリ実行、運用レポート
  • これらをプランニングする
     ・計画、モデル、予測、更新

ダッシュボード

  ・目的:現在の活動状況を測る
  ・ユーザー:経営者層、マネジャー、スタッフ
  ・更新頻度:即時
  ・データ:イベント
  ・クエリ:リモートシステムで実行
  ・画面:チャート

スコアカード

  ・目的:進行状況を示す
  ・ユーザー:経営者層、マネジャー、スタッフ
  ・更新頻度:周期的なスナップショット
  ・データ:サマリー
  ・クエリ:ローカル環境のデータマートで実行
  ・画面:図形

・経験則
 ・ビジネスユーザーが好むものは何でも使う!

パフォーマンスダッシュボードの3つのタイプ

  • 業務系
    • 焦点:モニタリング業務
    • 重点:モニタリング
    • ユーザー:管理者
    • スコープ:現場
    • 情報:詳細
    • 更新頻度:日中
    • 適しているのは:ダッシュボード
  • 戦術系
    • 焦点:プロセスの最適化
    • 重点:分析
    • ユーザー:マネジャー
    • スコープ:部門
    • 情報:詳細/サマリー
    • 更新頻度:日次/週次
    • 適しているのは:BIポータル
  • 戦略系
    • 焦点:戦略実行
    • 重点:コラボレーション
    • ユーザー:経営者層
    • スコープ:企業
    • 情報:サマリー
    • 更新頻度:月次/四半期
    • 適しているのは:スコアカード

パフォーマンスダッシュボードをどのように作るか?

3つのアーキテクチャー

・ビジネスアーキテクチャーとテクニカルアーキテクチャー
・BIアーキテクチャー
・データアーキテクチャー

ビジネスアーキテクチャー

  • ステークホルダー:投資家、取締役、全従業員、顧客、サプライヤー、監督機関
  • 戦略:ミッション、ビジョン、バリュー、ゴール、目的、戦略マップ
  • 戦術:資産、人員、知識、計画、プロセス、プロジェクト
  • 意味:用語、定義、ルール、メタデータ、教育、ガバナンス
  • 指標:先行、遅行、兆候

テクニカルアーキテクチャー(パフォーマンスダッシュボードに直接つながるところ)

  • ディスプレイ:ダッシュボード、BIポータル、スコアカード
  • アプリケーション:モニタリング、分析、マネジメント
  • データソース:スプレッドシート、メモリーキャッシュ、DWH、データマート、レポート、ドキュメント
  • 統合:カスタムAPI、EAI(Enterprise Application Integration)、EII(Enterprise Information Integration)、クエリ実行、ETL、手動
  • データソース:レガシーシステム、パッケージのアプリ、Webページ、ファイル、サーベイ、テキスト

BIアーキテクチャー


(画像はPDFより拝借しております。)

ビジネスアーキテクチャー

・統合BI能力
 ・モニタリングレイヤー
 ・分析レイヤー
 ・レポーティングレイヤー
 ・プランニングレイヤー
・BIプラットフォーム(分析サーバ)
 ・共通のサービス、モデル、API、ファイル形式
・データデリバリーアーキテクチャー

データアーキテクチャー

Quicken Loans(アメリカの金融業者)の例

(画像はPDFより拝借しております。)

  • 企業内のソフトウェアのデータを統合し、Web経由で2日分のデータを蓄積(Real-time Store)→業務系、戦術系のダッシュボードに利用
  • Real-time Storeのデータを整形して、2ヶ月分のデータを蓄積(Operational Data Store)
  • Operational Data Storeから2週間分のデータを蓄積したものを100件ほど保持する(OLAP(online analytical processing) Cubes)→業務系、戦術系のダッシュボードに利用
  • Operational Data Storeのデータを整形して、7年分のデータを蓄積(Data Warehouse)
  • Data Warehouseのから7年分のデータを蓄積したものを250件ほど保持する(OLAP Cubes)→レポーティングや分析ツールに利用

データアーキテクチャにはいろいろあるようです。

Direct Queryアーキテクチャー

スクリーンの要素が個々のクエリに直接的にリンクしている

  • 良い点:
    • すばやくデプロイできる
    • 低コスト
  • 悪い点:
    • 浅く、ドリルダウンが制限される
    • ディメンションがない
    • ハードウェア組み込みクエリ

Query and Cacheアーキテクチャー

クエリがクエリ化可能なキャッシュとともに置かれている(In-memory or disk cache)

  • 良い点:
    • すばやくデプロイできる
    • レスポンスが速い
    • ナビゲーションが速い
  • 悪い点:
    • 静的なデータセットに縛られる

BIセマンティックレイヤー

BIツールがユーザーのためにビジネス用語で表現したクエリオブジェクトを提供

  • 良い点:
    • 抽象的なクエリオブジェクト
    • ディメンションで分けられたビュー
  • 悪い点:
    • 一般的なODBCコネクション
    • 主にDWHのヒストリカルデータ

Federated Queryアーキテクチャー

EII(Enterprise Information Integration)ツールが、スクリーンの要素と合うように複数のソースからクエリ化する

  • 良い点:
    • 複数のソース
    • セマンティックレイヤー抽出
    • デプロイが素早い
    • プロトタイプ
  • 悪い点:
    • 履歴がない
    • データの質の問題
    • 複雑性

データマートアーキテクチャー

ダッシュボードがバッチで読み込まれた永続的なデータマートに対してクエリを実行する

  • 良い点:
    • 複数のソース
    • ディメンショナルモデル
    • ヒストリカルコンテキスト
    • 素早く複雑なクエリ
  • 悪い点:
    • 即時性がない
    • 統合されていない?

Event-drivenアーキテクチャー

  • インプット:DWHや業務系システム
  • 業務系ダッシュボード:データの把握、データの集計、指標のマネジメント、イベントの検知、ルールの適用、作用/トリガー
  • アウトプット:アラート、トリガー(ワークフローエンジン)、SQL/Stored Procedures(業務系システム)

おわりに

BIダッシュボードを作成する際の洗い出しが面倒だと思っていたので、この資料で良い初期値を手に入れられました。これまでの分析業務はビジネスの一部を切り取って、疎結合なものを多く扱ってきたと思います。あるイベントの効果検証とか、ある対象の予測などです。この資料を読んで、組織の戦略などと密に絡み合い、様々な関係者の目的を成し遂げるようなBIダッシュボード作成において、組織間の調整力が強く求められるのかなと思いました。そこにデータサイエンティストの持つスキルはどうフィットするのだろうか?と思いつつ、どうやってサイエンス要素をバリューが出る形で盛り込んでやろうかと考えています。

参考情報

[1]Wayne W. Eckerson(2006). “Performance Dashboards:Measuring, Monitoring, and Managing Your Business”
[2]Sandra Durcevic(2019). “12 Best Business Intelligence Books To Get You Off the Ground With BI”, The datapine Blog

2018年に参加したデータ分析系の勉強会で得た知識の詰め合わせ

社内に分析チームがないことから、私は月に3~4件は刺激を求めて勉強会に足を運んでいます。新しい知見を得れることは然ることながら、社内だともらえないフィードバックをいただけたり、課題の共有などをできるのが良いと思います。

目の肥えた皆さんにとって新規性のある情報はあまりないかもしれませんが、詰め合わせた情報をお楽しみください。

統計学まわり

  • 勉強会名
    KDD論文読み会

論文読んだ「Winner’s Curse: Bias Estimation for Total Effects of Features in Online Controlled Experiments 」

機械学習まわり

  • 勉強会名
    merpay×M3 機械学習 NIGHT

    • 会社名
      M3
    • 知見
      コンテンツをレコメンドする際のテクニックとして、MFとCNNの合わせ技について紹介されていました。訓練時には、アクセスログデータをもとにMFで潜在的な表現を抽出しそれのアイテム間の類似度を計算し、推薦時には、テキストのタイトルとキーワードなどをCNNで学習し訓練時と同じ次元になるようにアイテムのベクトルを出力する。そして、訓練時のものと近いアイテムを推薦することでCold-Start問題を克服するとのことでした。
    • 発表資料
      Matrix Factorization と Text CNN による Cold Start Problem への取り組み

The Road to Machine Learning Engineer from Data Scientist

  • 勉強会名
    NetaDashi Meetup

    • 会社名
      NRI
    • 知見
      Elmoを用いた文書分類。Word2Vecなどではできなかった、文脈を考慮して類似度などを算出できる。
      Elmoの多言語対応に関しては、このGitHubを参照すると良いらしい。
      https://github.com/HIT-SCIR/ELMoForManyLangs

異常検知の評価指標って何を使えばいいの? / Metrics for one-class classification

  • 勉強会名
    グリー開発本部 Meetup #1 DataEngConf NYC報告会

    • 会社名
      GREE
    • 知見
      Contextual Banditについての紹介
      Artwork Personalization at Netflix」という記事で2017年ごろに取り上げられていたようです。

エンジニアリングまわり

  • 勉強会名
    グリー開発本部 Meetup #1 DataEngConf NYC報告会

    • 会社名
      GREE
    • 知見
      LUIJI
      ・メリットとしては、少なくとも以下のものがあるそうな。
       ・Pythonで書ける
       ・エラーの途中で処理を止めて、それを解消したら、止めたポイントから開始できる
       ・様々なツール群と連携できる柔軟性
       ・10行程度でスクリプト書ける。
       ・複雑な依存関係も描ける。
    • 発表資料
      https://www.slideshare.net/greetech/dataengconf-nyc18-1

  • 勉強会名
    bq_sushi tokyo #9 2018総集編

    • 会社名
      オープンハウス
    • 知見
      BigQueryGIS
      BigQueryからGISの情報を扱うことが可能になったらしい。顧客の希望する物件の情報をレコメンドするために地理情報を扱うらしいです。
      ただ、基準とする測地系が国によって異なり、それらを考慮しないで推薦すると1~2kmはズレてしまうとのこと。家買う際にそんだけズレるとキツイですね。こちら(BigQueryGIS: Google und PostGIS )はBigQueryGISに関連した情報を漁って見つけた記事ですが、BQで抽出した情報をそのままGoogleMapに表示できるのは面白いですね。

データ分析のツラミ系

  • 勉強会名
    merpay×M3 機械学習 NIGHT

    • 会社名
      M3
    • 知見
      メタデータの検索システムについて
      データセット名、テーブル名、カラム名、カラムのディスクリプションをキーワードで検索できる。
      日次でディスクリプションを取ってくるようにしている。どのドキュメントが一番見られているのかもモニタリングできるとのこと。似たような取り組みとして、リクルートがMetaLookingとかいう内製ツールを作っていたりしますね。私は各サービスごとのDBのテーブルの注意点などを適宜スプレッドシートに残す程度しかしていませんが、分析者がすぐにキャッチアップできる環境は重要ですね。

  • 勉強会名
    MLCT

    • 会社名
      ???
    • 知見
      事業計画書を作るリーンキャンバスの機械学習版とも言える、機械学習キャンバス0.1というものが質疑応答の際に紹介されていました。

  • 勉強会名
    グリー開発本部 Meetup #1 DataEngConf NYC報告会

    • 会社名
      GREE
    • 知見
      データリーク問題はどこも苦しんでいる?
      SalesForce社が顧客企業15万社の情報を活用して、機械学習モデルを構築しようとしたが、
      蓄積されたデータにおいては、ビジネスプロセスをやたらと予測できてしまうようなデータリーク問題が起きまくっていた。
      原因としては、データサイエンティスト不足(分析を前提としたデータ蓄積ができていない。)、手入力によるラベリングミスなどがあるらしい。
      どこの企業も苦しんでいると思うと、分析を前提にスナップショットを残し続けるという取り組みは競争優位性につながるのだろうか。
      SalesForce社は、訓練と検証の精度の差が大きいと注意したり時系列データを確認するなどして、データの信憑性に気をつけてモデルを作ったそうです。
      15万社にうまくフィットするモデルなので、精度は70~75%で満足できるものらしい。
    • 発表資料
      https://www.slideshare.net/greetech/dataengconf-nyc18-1

データアナリストもLinuxについて学んでみる

はじめに

もともとデータアナリストとして働いているのですが、最近、エンジニアと一緒に仕事をすることが増えたので、良いとされている教科書を読むなどしています。その中で、『新しいLinuxの教科書』がわかりやすく書かれていたので、今回はそこで出てきたコマンドたちを箇条書きにして忘備録としておきたいと思います。なのでいつもよりショボいです。
普段、Rをメインとして機械学習・クローリング目的でPythonを扱うものとしては、エンジニア寄りの知識が薄いなぁと課題に感じていたので、これを良い機会と思ってCLIへの耐性を付けていきたいと思います。

感想

分析業務において、仮想環境でCentOSやUbuntuを扱うことはあるのですが、分析環境を作った上で、クローリング業務・RPAシステムなどのスケジュール実行をするくらいで基礎からちゃんと勉強したわけではありませんでした。そのため、教科書には知らないコマンドもありました。
この本はLinuxを使って開発する際の作法(移植性大事、GUI使うな、十字キー使うな)から、歴史的なコマンドの変遷、シェルスクリプトを用いた作業の効率化、Gitなどのチーム開発ツールの紹介まで幅広く扱われていて十分な内容だと思いました。図による解説もあるので、普段R使っているような非エンジニアでも読めるはずです。これからエンジニアと一緒に分析業務をしていくデータアナリストの方には強くおすすめできる本だと思います。Rでの当たり前の機能が、Linuxのシェルで普通にあるんだと色々と学びがありました。

コマンドたち

date

現在の日時の表示

echo

文字列の表示

pwd

現在のディレクトリを確認

cd

カレントディレクトリの変更

ls

ディレクトリ内のファイルの表示、オプションでパターン指定も可能

mkdir

ディレクトリを作成する、pオプションで深い階層も一気に作れる

touch

ファイルを作成する

rm

ファイル・ディレクトリを削除する

rmdir

空のディレクトリを削除する

cat

ファイルを表示する

less

ファイル内容をスクロール表示する

cp

ファイル・ディレクトリをコピーする

mv

ファイル・ディレクトリを移動する

ln

ファイルにリンクを張る

find

ディレクトリツリーからファイルを探す

locate

ファイル名データベースからファイルを探す(高速)、何日か前のファイルを探すの適している。

which

コマンドのフルパスを表示する

alias

エイリアスの設定(わかりやすい別名を与える)

set

bashのオプションを切り替える

shopt

bashのオプションを切り替える(種類豊富)

PATH

コマンド検索パス

printenv

環境変数の表示

export

環境変数の設定

sudo

コマンドをスーパーユーザとして実行

ps

プロセスの表示(x, ux, ax, aux, auxww)

jobs

現在のジョブ一覧を表示

fg

ジョブをフォアグラウンドにする(入力受付状態にする)

bg

ジョブをバックグラウンドにする

kill

ジョブ・プロセスを終了させる

|

パイプライン(処理と処理をつなぐ)
R使いからするとRのdplyrでパイプ処理を知ったので、Linuxに普通にあるのを知れて新鮮な気分になった。

head

先頭の部分を表示
こちらもRでよく使うものですね。

du

指定したファイルやディレクトリの使用容量を表示する

wc

入力ファイルの行数・単語数・バイト数を数える

sort

行単位でテキストを並び替える

uniq

同じ内容の行を省く

cut

入力の一部を切り出して出力する(元データから特定の部分を抽出したい際など)

tr

入力の文字を置き換える・削除もできる(-d)

tail

ファイルも末尾部分を表示する

diff

二つのファイルの差分を表示する

grep

文字列を検索する

sed

テキストの編集を元ファイルを変更せずに行える

awk

テキストの検索や抽出・加工などの編集操作を行う(sedより高機能で、スクリプトは「パターン」と「アクション」からなる)
・列選択もできる
 ・CSVファイルからのスコア集計などもできる。
 ・あんちべさんの本『データ解析の実務プロセス入門』でも紹介されていた。

xargs

標準入力として引数のリストを与える(findやgrepとの組み合わせで使うことが多いらしい)

tar

ファイルをアーカイブファイルにまとめたり、アーカイブファイルから元のファイルを取り出したりする

gzip

ファイルを圧縮・展開する(一つのファイルしか圧縮できないのでtarとの併用を行う)

bzip2

gzipよりも高い圧縮率で圧縮を行うが、gzipよりも圧縮・展開に時間がかかる

zip

アーカイブと圧縮を同時に行う(多くのディストリビューションで標準インストールされていない。unzipも必要)

git

ファイル変更履歴を保存し管理するツール
 ・git init リポジトリを作成
 ・git add コミット対象として登録
 ・git commit コミットする
 ・git status ワークツリーの状態を表示
 ・git diff 差分を表示する
 ・git log 履歴を表示する
 ・git revert コミットを取り消す
 ・git branch ブランチの一覧表示、新しくブランチを作成
 ・git checkout ブランチを切り替える
 ・git merge 指定したブランチを現在のブランチにマージする
 ・git branch -d ブランチを削除する
 ・git push 変更の履歴を送る
 ・git clone リポジトリを複製する
 ・git remote add リポジトリパスに別名を設定する
 ・git fetch 他のリポジトリの変更を取り込む

yum

パッケージ管理(CentOS)
 ・yum install パッケージのインストール
 ・yum erase/remove パッケージのアンインストール、削除
 ・yum search パッケージの検索
 ・yum info パッケージの詳細情報を表示

apt

パッケージ管理(Ubuntu)
 ・sudo apt-get install パッケージのインストール
 ・sudo apt-get remove パッケージの削除
 ・sudo apt-get purge 設定ファイルも含めた完全削除
 ・apt-cache search パッケージを検索

ssh

リモートログインする

info

オンラインマニュアルを表示する(索引や階層構造を設定できるなどmanより充実)

参考文献

新しいLinuxの教科書

データマイニングに関するSlideShareを大量に集めてみた#2

前回の「SlideShareの機械学習に関するスライドを大量に集めてみた」でSlideShareの検索機能に不満のある方が、やはりおられたようなので、他のバージョンも作っていきます。今回はGoogleのsiteコマンド検索( 「データマイニング site:slideshare.net 」)でヒットした520件を対象にWebスクレイピングし、タイトルで検索できるようになっています。前回からの改良点は、URLがリンクになっている点です。(スマホユーザーも嬉しい)
ビュー数順に並んでいますが、TablePressのビュー数でソートするとどうやら整数と認識されていないようで、うまく並び替えができないようです。

たまに企業での分析事例共有などのスライドもあるので、仕事のアイデアも手に入ったりします。書籍になっていなかったりするし、Google検索だけで見つけようとすると大変なので、この試みは当分続けていこうと思います。本文内のテキストを取得してタグ付けしておくのも行う予定です。

[table id=4 /]

統計解析の学習用動画まとめ

階層ベイズ&MCMC講義 (久保拓弥) 難易度★★
緑本こと、『データ解析のための統計モデリング入門』を書かれた久保先生による解説動画です。
本でいうところの8章と10章が扱われているようです。

MCMC講義(伊庭幸人) 難易度★★
伊庭先生によるMCMCの解説動画です。長いですが、丁寧に解説されています。

パターン認識と機械学習入門 第1回@ワークスアプリケーションズ

Dan Does Data: Tensor Flow, Deep MNIST for Experts

慶應大学講義 応用確率論 第十三回 ベイズの方法 カルマンフィルタ1
https://www.youtube.com/watch?v=P85JCE3tZWY

強化学習講義 (牧野貴樹) 難易度★★

多腕バンディットなど強化学習の手法についてかなり細かく説明されている動画です。長いですが、濃ゆい内容なので効率的に勉強ができると思いました。

海外のマーケティング系ジャーナルまとめ

今回は海外のマーケティング系ジャーナルについて簡単にまとめてみようと思います。

海外のマーケティング系ジャーナルとして、評価の高いものは一体何なのか、そして、そのジャーナルの特色は何なのか、少しでも説明できれば幸いです。

まず参考としたものが、海外のマーケティング系ジャーナルをランキング化したサイトです。
A Ranking of Marketing Journals
これはそもそも誰が集計してランキング化したのか気になったので、見てみると、
Michigan State UniversityのG. Tomas M. Hultさん
University of North AlabamaのWilliam T. Neeseさん
University of Arkansas at Little RockのR. Edward Bashawさん

(1) importance/prestige index
(2) popularity/familiarity index
という指標をもとにランキングしたもののようです。
ランキングの元となったデータのサンプルは1000人の学術関係者だそうです。
一旦、このランキングを信じることにしましょう!
今回はこのランキングの云々はあまり重要ではないので。

本題のジャーナルですが今回はランキング上位の4つを紹介したいと思います。
(1)Journal of Marketing
(2)Journal of Marketing Research
(3)Journal of Consumer Research
(4)Marketing Science
の計4つです。

(1)Journal of Marketing
・1936年創刊
・マーケティング系ジャーナルのリーダー的存在
・マーケティングやマーケティングマネジメントの重要な問題に焦点を当てたマーケティングの原理に関するプレミアムかつ幅広い学術雑誌
・ジャーナルのモチベーション
 理論と実践とのギャップの解消
 学術関係者と実務家の両方に共有されうる情報
 教育機関、製造業、金融業、ヘルスケアなどの産業で働くマーケターに読んでもらいたい。

・取り上げられる論文
 マーケティング問題に対する解法となる新しい手法の提示
 マーケティングのトレンドや発展を調査報告
 一般化や検証結果の提示
 新しいアイデアや理論、マーケティングの理論と実践に関する俯瞰的な情報

(2)Journal of Marketing Research
・マーケティング哲学・概念・理論から、手法・技術・応用までをテーマとしている。
・出版は臨月
・対象はリサーチアナリスト、教育者、統計家となっている。
・ジャーナルのモチベーション
 職業の最前線、最先端の情報の収集を求めているマーケティングリサーチ学問家や実務 家向けの情報の提供し、マーケティングリサーチ全体の流れを伝える。
 扱われる論文としては、マーケティング課題の解決に関する新しい技術の概念、手法、応用などがある。理論だけでなく、経験に基づいたマーケティングノウハウが示されて いる。

(3)Journal of Consumer Research
・1974年創刊
・消費者行動の説明・描写に関する学術研究が中心。
・経験的、理論的、方法論的な論文からなり、分野としては心理学、マーケティング、社会学、経済学、コミュニケーション学、人類学がこのジャーナルでは扱われる。
・経営的な話よりも、学問的な内容である。
 内容としては、ミクロレベル(ブランド選択など)からマクロレベル(唯物論的な価値の発展)まで幅広い。
・理論や統計学などに固執せずに幅広い知識が得られるかもしれません。

(4)Marketing Science
・マーケティングサイエンスはオペレーションズ・リサーチとマネジメント・サイエンスの研究機関。
・経験的、理論的な定量的なマーケティングリサーチに焦点を当てています。
・オペレーションズリサーチに重きを置いていたりするので、数学が好きな人には丁度良いかもしれません。

各々の読み比べをしていないので、あまりレベル感がわからないですが、時間の許す限り、マーケティングのTopジャーナルであるこれら4大ジャーナルを読んで行きながら各々の明確な役割の違いを体感していこうと思います。