サポートベクターマシン(SVM)のまとめ・参考文献

今回はサポートベクターマシン(Support Vector Machine:SVM)の学習に当たって、見つけた参考文献を列挙していこうと思います。

  • ブログ系
  • R言語でSVM(Support Vector Machine)による分類学習
    無料で利用できる統計解析ソフトRを用いてサポートベクターマシンについて紹介してくれているブログです。

    SVMの定番入門書「サポートベクターマシン入門(赤本)」の読み方
    サポートベクターマシンを学習する上で役に立つ文献を紹介してくれています。

    ところでサポートベクターマシンって何なの?
    プログラムのコードと実践例が記されています。ただしコードはjavaの様です。

    SVM を使うと,なにが嬉しいの?
    サポートベクターマシンの手法としてのモチベーションが記されています。

    SVMの最大の特徴は「マージン最大化」にある

    識別境界の位置を決定する明確な基準を持っており、学習データの中で最も他クラスと近い位置にいるものを基準として、そのユークリッド距離が最も大きくなるような位置に識別境界を設定する。明確な基準を与えているということ自体、ノンパラメトリックな手法では他に例のないことで、SVMの最も優れた部分とされる。

    Rとカーネル法・サポートベクターマシン
    Rを用いたサポートベクターマシンの実践例が載ってあります。同志社大学のページなので、ちょっと信用度が高いかも。

    SVMを使いこなす!チェックポイント8つ
    ・スケーリング(特徴量の修正)
    ・カテゴリ特徴量(ダミー変数の作成)
    ・カーネル関数
    ・パラメータ
    ・クロスバリデーション
    ・不均衡データ問題(パラメータC(コスト)を大きくする、データ数を揃える、アンダーorオーバーサンプリング)
    ・多クラス分類
    ・アンサンブル学習

  • 論文・レポート系
  • サポートベクターマシン入門
    産業技術総合研究所のレポートです。大変わかりやすい記述です。

    痛快!サポートベクトルマシン : 古くて新しいパターン認識手法
    ちょっと短めで、かつ古いのですが、大まかな流れをサクッと掴むには向いていると思います。

    サポートベクターマシンによる倒産予測
    卒業論文ですね。

    企業格付判別のための SVM 手法の提案および逐次ロジットモデルとの比較による有効性検証
    http://www.orsj.or.jp/~archive/pdf/j_mag/Vol.57_J_092.pdf

  • スライド系
  • SVMについて
    2クラスの分類しか記されていませんが、きれいにまとまった資料だと思います。

    メモ

    SVM
    利点
     ・データの特徴の次元が大きくなっても識別精度が良い
     ・最適化すべきパラメータが少ない
     ・パラメータの算出が容易

    欠点
     ・学習データが増えると計算量が膨大になる
      (「次元の呪い」の影響が顕著)
     ・基本的には2クラスの分類にしか使えない

    コメントを残す

    メールアドレスが公開されることはありません。 が付いている欄は必須項目です