2019年に読んだデータ分析系の本の振り返り(21+1冊)

はじめに

2020年、あけましておめでとうございます。年末に自分自身を振り返ろうと思ったのですが、結局データ分析と勉強しかしていないわけで、書籍を振り返ろうと思うに至りました。私の知り合いのデータサイエンティストはだいたい全冊持っているであろうと思われますが、良い本だと思うので思い出していただければ幸いです。

1.『ベイズモデリングの世界』(岩波書店)

基本的に階層ベイズモデルを使って、個体ごとの異質性を考慮した分析手法が提案されています。前半はオムニバス形式で様々な先生がモデルの適用について執筆されており、後半では伊庭先生による階層ベイズモデルの講義になっています。途中でスタイン統計量による縮小推定の話があげられ、柔軟なモデリングのためには「階層化した方が少なくとも望ましい推定量が得られる」という数学的証明を捨てることもやむを得ないと書かれています。

2.『トピックモデルによる統計的潜在意味解析 (自然言語処理シリーズ) 』(コロナ社)

この本はトピックモデルの教科書というよりも、ベイズ推定の教科書という側面が強い印象があります。途中で出てくる数式は流し読みするのは難しく、最低2冊以上のノートが別途必要になると思います。一度でもLDAのパラメータを導出してみたいという方には良い教科書だと思います。疑似コードが提供されているので、それをもとにRやPythonでコーディングしていけば、一番シンプルなLDAが非常に短い行で実行できてしまうことに驚かれるかもしれません。人間が手を動かして推定アルゴリズムを導出しているからこそ、短いコードで済むということを実感できるはずです。

3.『構造的因果モデルの基礎』(共立出版)

グラフィカルなアプローチで因果推論を扱っている書籍です。Judea Pearl流の因果推論アプローチについて記すことを目的に書かれています。基礎と書かれていますが決して簡単ではありません。ただ、扱われる数学のレベルとしては確率と線形代数がわかれば大丈夫だと思われます。余談ではありますが、1章の相関関係と因果関係の事例紹介で「おむつとビールの話」が都市伝説ではなくきちんと記事としてWall Street Journalという雑誌に掲載されていたことが明らかにされています。

4.『現場で使える!PyTorch開発入門 深層学習モデルの作成とアプリケーションへの実装 (AI & TECHNOLOGY)』(翔泳社)

PyTorchを触ったことがないが、深層学習の手法について知っている層を対象とした本です。6章まではGoogleのColabで動かせるのでGoogleに課金することなく深層学習による回帰、CNN、GAN、RNN、Encoder-Decoderモデル、ニューラル行列因子分解をPyTorchで試すことができます。写経したものはこちら。転移学習や高解像度化や画像生成、文章のクラス分類、文書生成、機械翻訳などもできるので、PyTorchでこれくらいの量をコーディングしたらこれくらいのことができるのかという学びや、他の人の書いたPyTorchコードを読みやすくなるなどの便益は十分にあると思いました。

5.『作ってわかる! アンサンブル学習アルゴリズム入門』(シーアンドアール研究所)

会社で行っているPythonもくもく会用に買った本で、scikit-learnを使わずに機械学習のアルゴリズム(アンサンブル系)をコーディングするための本です。pythonのコードについて逐次、細かい解説が行われているわけではないので、1行1行自分でコメントを加えながら写経をしていけば力が付くという本かなと思われます。sklearnはそれはそれで素晴らしいですが、こういう本でフルスクラッチで修行できるのはいいですね。

6.『数理統計学―基礎から学ぶデータ解析』(内田老鶴圃)

統計検定1級を合格された方のブログで紹介されていた教科書です。理系の大学生レベルの数学知識があれば、数理統計学の基礎を学べると思います。中心極限定理の証明や、様々な分布の期待値や分散、様々な分布の性質について数式を用いてしっかり理解することができます。数式もほどよく端折られているので、無論ですがノートが数冊必要になります。各章毎にある練習問題も解くことで力が付くと思います。日本の大学の授業の教科書がこれだったらジェノサイド(再履修者の大量発生)が起きるんだろうなと思ってしまった。

7.『44の例題で学ぶ統計的検定と推定の解き方』(オーム社)

統計の検定に関してだけ扱った珍しい本です。第3部までは統計学の普通の教科書ですが、それ以降であらゆる検定の例題が44件も載せられています。パラメトリックな検定から、ノンパラメトリックな検定まで幅広く扱われています。一番気にいっているのは仮説検定法の分類の表です。これさえあれば、どのデータに対してどの検定を行えばいいかが一目瞭然です。

8.『わけがわかる機械学習 ── 現実の問題を解くために、しくみを理解する』(技術評論社)

機械学習の原理を手早く数式を交えて学べる本です。かゆいところに手が届いていると言うか、既出の教科書では捨象されがちな、条件付き確率における2変数以上の条件づけでの表現に紙面を割いていたりしてくれるのが嬉しいです。ある程度数学の話はわかるが、だいぶ忘れているビジネスパーソンには大変にありがたいコンテンツと言えると思います。ベイズ線形回帰に関しても行列を用いた、わかりやすい導出方法が紹介されています。またコラムで紹介されている、測度論にどう向き合えばいいかの著者の見解は参考になります。

9.『Statistical Rethinking: A Bayesian Course with Examples in R and Stan (Chapman & Hall/CRC Texts in Statistical Science)

R言語とstanを用いてベイズ統計学を入門レベルから学べる本です。各トピックごとにそれなりの紙面が割かれています。例題も豊富にあるので、線形回帰・MCMC・情報量基準・階層ベイズモデルまで、ベイズ統計学を基礎から応用までしっかりと学べると思います。youtubeで著者の講義も配信されているので、留学気分を味わえます。

10.『scikit-learnとTensorFlowによる実践機械学習』(オライリージャパン)

2019年に日本で開かれたML SummitでTFの開発者がおすすめしていた教科書です。前半部分で機械学習の入門から応用までをわかりやすい説明で学ぶことができます。数式は少ないですが、図とソースコード(Python)がちりばめられており、手を動かして理解を進めることができます。後半部分はTensorFlowを用いた深層学習の基礎を同様に手を動かして学ぶことができます。ただ、TFのバージョンも変わってきているので前半の説明をアテにして読むのも良いと思います。

11.『AIアルゴリズムマーケティング 自動化のための機械学習/経済モデル、ベストプラクティス、アーキテクチャ (impress top gear)

マーケティングへのデータサイエンスの適用に関する珍しい書籍です。ソースコードはついていないですが、業務で使う際のアイデアが手に入ることもあります。一般的な回帰、生存時間分析、オークション、アトリビューション分析、アップリフトモデリング以外にも、情報検索やレコメンデーションやトピックモデルなどマーケティングながら学際的なトピックも扱われています。レコメンドなどで使われる、ランク学習に関して詳しく書かれた書籍をあまり知らないので、この本はその点においてもありがたい本でもあります。

12.『入門 統計的因果推論』(朝倉書店)

ほぼ全ての章でグラフィカルなアプローチで因果推論を扱っています。例題も豊富なので、一つ一つ丁寧にやれば理解が捗ります。おそらく、例題の多さを含め一番丁寧にd分離性、do演算子、バックドア基準、フロントドア基準に関する説明をしてくれている本なのかなと思いました。グラフでの因果推論に関して初めての人でも、確率さえ知っていれば読み進めることができるはずです。また、途中で操作変数法の紹介もされ、経済学出身者としては読みやすい。ただ、傾向スコアのくだりや、DIDなどのくだりはあまり出てきません。あと、やってないですが章末の練習問題に対するSolution Manualが提供されているようです。

13.『実践 ベイズモデリング -解析技法と認知モデル-』(朝倉書店)

ベイズモデリングを様々な事例に適用する方法がオムニバス形式で記された本です。ワイブル分布や異質性を考慮した二項分布、無制限複数選択形式のアンケートデータに対する手法、トピックモデル、項目反応理論などが扱われています。マーケティングの実務で使える事例が多いように感じました。こちらはサポートサイトでRコードとstanコードが提供されています。あと、appendixにあるプレート表現の見方も参考になります。

14.『機械学習スタートアップシリーズ ベイズ推論による機械学習入門 (KS情報科学専門書)

機械学習などで用いるベイズ推論を扱った教科書です。入門とありますが、入門者は書かれた数式をそのまま見ていても頭に入らないのではないでしょうか。手を動かしてなんぼの本だと思います。ノート2冊は絶対に必要です。たぶん、数式の展開を丁寧に記すと倍以上の厚みの本になると思います。各々のモデルに関してグラフィカルモデルが記されているのや、サンプルコードとしてGitHubにJuliaで書かれたソースコードが提供されているのも良いです。

15.『その問題、数理モデルが解決します』(ベレ出版)

物語形式で、様々な問題に対して数理モデリングのアプローチが紹介されています。途中でマッチング理論やゲーム理論やオークションなども登場することから、経済学出身者も喜ぶ内容かもしれません。社会人になってからナッシュ均衡という言葉が書かれた本は中々出会って来なかった。

16.『ヤバい予測学 ― 「何を買うか」から「いつ死ぬか」まであなたの行動はすべて読まれている』(CCCメディアハウス)

2013年と結構古い本ですが、データ分析を様々な事象に対して適用した事例紹介本です。アップリフトモデリングへの言及もあり、こういったものに関して日本は何年も遅れてブームが来るんだなという実感を与えてくれた本でもありました。appendixに分析事例が147個ほどあげられているのも参考になります。

17.『たのしいベイズモデリング2: 事例で拓く研究のフロンティア』(北大路書房)

主にstanを用いたベイズモデリングによる分析事例が1と2で38本もオムニバス形式で載っています。ほとんどの事例で階層ベイズモデルが扱われています。2では若干マーケティングに近い内容の題材も扱われ、データサイエンティストの人にも嬉しい内容かもしれません。もちろんデータとstanとRのコードがサポートサイトで提供されています。

18.『カルマンフィルタ ―Rを使った時系列予測と状態空間モデル― (統計学One Point 2)』(共立出版)

状態空間モデルで時系列予測を行うための手法が記されている本です。RのKFASパッケージが全面に渡って扱われています。トレンドを考慮したり、カレンダー効果を追加したり、共変量を追加したりなど様々なアプローチが紹介されコードも伴っているわけですから、業務でも抜群に役に立ちました。

19.『機械学習のエッセンス -実装しながら学ぶPython,数学,アルゴリズム- (Machine Learning)』(SBクリエイティブ)

自分のいる会社で最低限の数学がわかると思われる若いメンバーに買ってもらうように言っている本です。微積分・線形代数だけでなく、カルシュ・キューン・タッカー条件(最適化数学)に関しても扱ってくれているので、ここで出てくる数学がわかれば大体の論文に立ち向かえると思います。さらに、Pythonの基礎もこれで学ぶことができるので一石二鳥な素敵な本ですね。また、最後の方でスクラッチでアルゴリズムを書くパートがあり、こちらも勉強になります。

20.『機械学習のための特徴量エンジニアリング ―その原理とPythonによる実践 (オライリー・ジャパン)』(オライリー・ジャパン)

機械学習における前処理の指針を与えてくれる本です。Pythonのコードが提供されています。例えばですが、「テストデータにだけある、新しい単語は取り除いてしまえばいい」などの細かいアドバイスが何気に嬉しいです。「Effectコーディング」「特徴量ハッシング」「ビンカウンティング」「バックオフ」「leakage-proof統計量」などは読むまで知らないところだったので勉強になりました。

21.『データサイエンスのための統計学入門 ―予測、分類、統計モデリング、統計的機械学習とRプログラミング』(オライリージャパン)

データ分析の仕事をする上で最低限必要な知識を幅広く抑えることができる本です。数式は少なく、ところどころ出てくるコードはR言語です。参考文献などがブログだったりするため厳密さがめちゃあるわけではないですが、業務で使う分には問題ないと思います。分類問題において、AUCなどの評価指標だけでなく、予測値自体の探索的分析のすすめなどが書かれており、参考になりました。また、特徴量エンジンとしてのk-NN法の話も面白いと思いました。

[+α]『プログラマのためのGoogle Cloud Platform入門 サービスの全体像からクラウドネイティブアプリケーション構築まで』(翔泳社)

Google Cloud Platformを初めて触るデータ分析者にはちょうど良い本です。説明もわかりやすいので、いきなりアカウントを作ってドキュメントを解読するよりかは戸惑いは減るはずです。この本を土台に、GCS・GCEを駆使してML系のAPIを呼び出して使うなどの最低限の操作は私でもできるようになりました。GCPの画面や機能もどんどん変わっていくので書籍を買ってもアレなんですが、歴史的な背景も若干記述されているので、それはそれで勉強になります。ただ、エンジニアにこの本を買うべきか聞いた際にネガティブな意見があったのですが、たぶん現役プログラマからすると簡単過ぎるからなんだろうなと思います。

終わりに

2019年もぼちぼち勉強できましたが、2020年もこれまで同様にノートとペンを大事にする勉強を続けていき、コーディングも分析ももっともっと数をこなして会社や社会に求められるようなデータ分析官を目指していこうと思います。あぁ、英会話などの勉強をする時間を作るのが難しい。

Causal Inference in Economics and Marketingを(今更)読んだ感想と備忘録

2016年にバリアンがPNAS(Proceedings of the National Academy of Sciences of the United States of America)に投稿した”Causal Inference in Economics and Marketing”というペーパーを見つけました。内容的に非常にわかりやすかったし学びがあったので、要約して自分のためにメモを残しておきたいと思います。要約なんぞいらないという方はこちらのPDFを見ていただけると良いです。

修士が終わってからWebマーケティングの仕事をずっとしていますが、ABテストができるケースが多かったので因果推論が必要になる場面はあまりありませんでした。ただ、事業会社でしばしば行われるオフライン広告や社内の研修の効果に関してはABテストのような実験はできませんので、因果推論のニーズは「実は」高いと思います。ただ、広告を打つ主体・研修を進める主体がその分析のニーズがあるかというと全然そんなことはないと思います。今回のバリアンの素晴らしい記事をもとに因果推論の民主化をできると、説明の手間が省けるぶん世のデータサイエンティストは少しだけ楽になるかもしれません。

目次

・欠落変数の問題
・因果推論の重要なコンセプト
・因果効果を推定できる方法
 ・自然実験
 ・操作変数法
 ・回帰分断デザイン
 ・Difference in differences(DID)
・おわりに
・参考文献

欠落変数の問題

まずは以下のようなシンプルな線形モデルについて振り返ってみます。y_cはある都市でのサーフィン映画の一人あたりの売上、x_cはある都市でのサーフィン映画に関する広告支出を、bは係数、e_cは誤差項を表します。

この式を推定できれば広告主は何が嬉しいのかと言うと、1単位あたり広告支出を増やせば、どれくらいサーフィン映画の売上が増えるのかがわかるということです。
しかしながら、様々な都市を混ぜこぜしたデータからこの式を推定したものを使って、求まったbが10だとします。その際に、100円突っ込めば1000円儲かる、濡れ手で粟とはこのことや!状態が訪れるのでしょうか。
回帰分析には欠落変数の問題があり、欠落変数が説明変数と相関していると、濡れ手で粟とは言えない状況が起きうります。

まず、本来モデルに加えるべき変数がモデルに含まれていない場合、その変数はすべて誤差項に含まれることになります。
係数bの数式を確認してみると、

から、yを代入すると、

となります。右辺のbは真のbの係数とします。もし、誤差項eと説明変数が相関していれば、右辺二項目の影響により偏った推定量を得ることになります。つまり、本来モデルに加えるべき変数が漏れており、それが説明変数と相関している場合は、濡れ手で粟状態になるとは言えず、100円広告に突っ込んでも1000円儲かると期待することはできなくなります。せっかく推定したのに大損するという、非常に気の毒な結末があるでしょう。

釈迦に説法ですが、被説明変数と説明変数の両方に対して相関してしまう変数を交絡変数と呼びます。今回のサーフィン映画の場合、モデルに含まれていない変数として「サーフィンへの関心度」というものが考えられます。例えば、ハワイ州のホノルルのようなエリアではサーフィンが盛んですしサーフィン映画も人気になりえます。他方、ノースダコタ州のファーゴのような、群馬・栃木・埼玉・岐阜のような海なし県のようなエリアの場合、サーフィンもサーフィン映画も人気ではないでしょう。

ここでのサーフィンへの関心度は「サーフィン映画に対する広告支出」にも影響を与える可能性もありますし、そもそもの「サーフィン映画の興行収入」にも影響を与える可能性があります。

また、広告費自体は、映画の広告担当者が様々なドメイン知識を利用して意思決定しているのが普通で、都市に対してランダムに広告予算を割り振っているという、無能な運用者を想定することは難しいです。そのため、都市間でランダムに広告費が割り振られると考えるような分析者はあまり賢明ではないでしょう。現実世界において、人間が意思決定した結果のデータのほとんどが交絡変数を持つと考えられます。

因果推論の重要なコンセプト

因果推論における重要なコンセプトは、反実仮想と実際の結果との比較をすることです。この場合の反実仮想は処置されなかった場合の処置群の結果となります。

ランダム化実験が可能な場合、セレクションバイアスはゼロになります。そのため、ABテストなどでランダム出し分けができるWebマーケティングは因果推論が行いやすいのです。しかしながら、実務においてのランダム化実験や、ランダムでなくともそもそもの実験自体がハードルが高いケースが多いです。以降ではそのような現状を踏まえた上で、因果効果を推定するための方法を紹介します。

因果効果を推定するための方法

自然実験

自然実験は、手元のデータからランダムに近そうな事象があるのではないかを見出すというアプローチです。バリアンの例では、スーパーボウル(アメリカンフットボール)の試合での映画広告出稿に関して、ホームシティのチームの試合がそのスタジアムで開催される場合に、10~15%ほど観客が多いという前提があるとして、映画広告の出稿の意思決定をする際にどのチームがそのスタジアムで試合が行われるかわからないという点に着目していました。つまり、どのチームがどのスタジアムで試合するかがランダムに決まると考え、広告を打たなかった場合の売上という反実仮想を推定することで、セレクションバイアスなく広告による映画の売上げ増の効果を推定することができます。

操作変数法(二段階最小二乗法)


一般的に広告費をどれだけ支払うかの意思決定をしている人は売上に影響を与えるような変数を考慮して、広告費を決めていると考えられます。しかしながら、それが分析者のモデルの中で考慮されず、誤差項として扱われてしまうことがあります。そのような状況下で適切な広告効果を推定する方法として操作変数法があります。再び釈迦に説法ですが、操作変数は広告費を通してのみ売上に影響を与える変数のことを指します。ここで、スーパーボウルの話に戻すと、プレイオフなどでのホームチームの勝利はそのスタジアムでの広告費の増加につながると考えられます。しかしながら、プレイオフに行けるかどうかは映画の売上に影響を与える可能性は低いと考えられます。つまり、プレイオフに進んだかどうかは操作変数として扱うことができそうです。

操作変数法によるbの推定量は以下のようになります。

操作変数zと誤差項eが直交することで最後の項は消え、真のパラメータ、つまり真の広告効果を求めることができます。あるいは、以下のような2つの方程式を用いることもできます。

第1段階ではプレーオフで勝ったかどうかを表すz_cを用いて、2つ目の式のパラメータを推定します。第2段階では第1段階で推定したaを使って予測したx_cを説明変数としてbを推定します。このようなアプローチを字面の通り、二段階最小二乗法と呼びます。この推定結果は操作変数法と等しくなります。

回帰分断デザイン(Regression discontinuity)

閾値を超えることによる因果効果に関心があるケースです。閾値よりも低いもの、高いものの両サイドに近いものを比較する。例えば、学校のクラスで40名のクラスと41名のクラスがいたとして、教育パフォーマンスのクラスの大きさによる因果効果を検証したい場合や、住宅周辺のブロードバンドのスピードが閾値を超えたと閾値を下回るエリアから、ブロードバンドの速度が住宅価格に与える因果効果を検証したい場合などに用いられるます。学校のクラスで40名クラスや41名クラスに配属されるというのはランダムに近いと考えます。


(ペーパーの図を引用しております。この図では21歳前後かどうかという歳のわずかな違いにおいてランダムに近い、処置群とコントロール群が生成されていると考えます。)

Webマーケティングの現場での活用においては、特定のページの閲覧数がある閾値を超えた場合に、そのユーザーに対して特別に処置(例えばクーポンを配る)を行うケースにおいて、閾値を超えたか超えなかったかの比較から処置の因果効果を推定することになります。つまりWebページの閲覧数が閾値を超える超えないはランダムに近いとしています。その際、閾値を超えたものの処置をしそこねた(クーポンを配り損ねた)というのがWeb広告における反実仮想となります。

バリアンのペーパーによると、Google、Microsoft、Facebookのエンジニアはこれらの実装を行い、閾値による比較を行っているようです。

Difference in differences(DID)

Difference in differences(DID)は時系列データでの因果推論において役に立つ手法です。
ここでは介入が仮になかったとしたら、処置群とコントロール群の前後の差は等しいという、以下のような仮定を置きます。

y_TFは処置群が、介入を受けなかった場合の後の結果(つまり反実仮想)、y_TBは処置群が介入を受ける前の結果、y_CAはコントロール群の後の結果、y_CBはコントロール群の前の結果を表しています。
これを処置群の後の結果y_TAから差し引くと以下のようになります。

つまり、処置群の前後の差は、処置群とコントロール群の前後の差が等しいのであれば、処置群の前後の差からコントロール群の前後の差を差し引いたもので表現することができます。これがDifference in differencesです。変動を見たい場合はブートストラップ法を適用することで変動幅を求めることができます。

水準のみならず、前後の比に関しても同様に扱うことができ、その場合は以下のように対数の差となります。

また、DIDにおいては反実仮想を推定する方法として回帰モデルが用いられることがあります。例えば、線形回帰やランダムフォレスト回帰などです。アプローチとしては機械学習に近く、共変量(その日の天気、ニュースなどのイベント、その他の外生変数)を用いてコントロール群の一部のデータで訓練します。続いて、残りのコントロール群のデータを用いてテストをし、モデルとしての汎化性能を高めます。そのモデルを用いて、介入期間における反実仮想を予測し、その反実仮想と実績を比較することで因果効果をもとめます。


(ペーパーの図を引用しております。こちらでは訓練データを用いて推定したモデルでテスト期間を予測し、介入期間での反実仮想を予測により求め、介入後の実績値と比較しています。)

おわりに

因果推論に関して既に様々な文献がありますが、バリアンの説明が一番頭に入ってきやすかった気がします。もちろん、因果推論のすべてのアプローチが網羅されているわけではないですが、これから因果推論の勉強を頑張ろうというモチベーションを上げるための教材としては良いなと思いました。

参考文献

[1] Varian(2016), “Causal Inference in Economics and Marketing”, PNAS
[2] “回帰不連続デザインRegression discontinuity design(および分割時系列デザイン)”
[3] 岩波データサイエンス刊行委員会(2016), 『岩波データサイエンス Vol.3』

Japan.R 2016のスライドまとめ

まだ手に入れていないスライドもあるので随時更新しますが、Japan.R 2016(connpass)のスライドをまとめています。後日、登場したパッケージなどのサンプルコードも載せていく予定です。

目次

・石田基広さんのキーノート
・ホクソエムとは何だったのか(ホクソエムさん)
・Rと探索的データ分析で、国連での日本の立ち位置を可視化する(安田洋介さん)
・マウス操作でかんたん予測分析(鈴木了太さん)
・高速・省メモリにlibsvm形式でダンプする方法を研究してみた(@hskksk)
・Rでてんしょくかつどう(@Med_KU)
・RStudio vs Emacs(@y__mattu)
・randomforestで高次元の変数重要度見る(@siero5335)
・Rで本を作りたい(前田和寛さん)
・28歳でプログラミングを始めた話(市川太祐さん)
・LDA-Visパッケージのご紹介(@doradora09)
・【e2d3R】E2D3からDot-Bar-Chartのご紹介(楠本一哲さん)
・このIRのグラフがすごい!上場企業2016(@ito_yan)
・Rでカルマンフィルタをしたい(@tetsuroito)
・PPAP(仮)(@yutannihilation)
・スライド未公開、ユーザーの状態遷移に関する分析のお話(@sanoche16)
・私とR(高栁慎一さん)
・めくってもめくってもサンプル画像(服部恵美さん)
・木と電話と選挙(causalTree)(安井翔太さん)
・スライド未公開、dplyrの話(@tomomoto)
・てかLINEやってる?(仮)(@wonder_zone)
・心理学における「再現性」の問題とBayes Factor(@NSushi)

・石田基広さんのキーノート

スライド未公開です。

・Linux使い
・ヘブライ語の意味構造を代数学でやっていた
・S/R言語の生みの親はJohn Chambers
 以下の二つは最近書かれた本だそうです。
 Software for Data Analysis: Programming with R (Statistics and Computing)
 Extending R (Chapman & Hall/CRC The R Series)
・S→S-plus→Rの順番で発展
・purrrを最近使い始めたそうです。
・XLConnectパッケージを使って、大学教員の採点活動を効率化しているそうです。

・ホクソエムとは何だったのか(ホクソエムさん)

匿名技術者集団ホクソエムの2016年の成果
・densratio( densratio: Density Ratio Estimation
・githubinstall
githubinstall: A Helpful Way to Install R Packages Hosted on GitHub
・healthplanet( Wrapper package for healthplanet api
・RODBCDBI
RODBCDBI: Provides Access to Databases Through the ODBC Interface
・jpmesh( jpmesh: Utilities for Japanese Mesh Code

起業されたとのことです。懸命に頑張って下さい!
株式会社ホクソエム

awesomeな人材が必要とのことで、awesomeな方はアプライしてみてはいかがでしょうか。

・Rと探索的データ分析で、国連での日本の立ち位置を可視化する(安田洋介さん)

スライド未公開です。
国連のデータを使って、Exploratoryを用いた探索的データ分析の実演をされていました。

・マウス操作でかんたん予測分析(鈴木了太さん)

R AnalyticFlow
Rで実践!データサイエンス~初めの一歩から高度な応用まで~

・高速・省メモリにlibsvm形式でダンプする方法を研究してみた(@hskksk)

・Rでてんしょくかつどう(@Med_KU)

Rmd でreveal.js のhtml スライドプレゼンテーション

・RStudio vs Emacs(@y__mattu)

RStudio vs Emacs Japan.R 2016

・randomforestで高次元の変数重要度見る(@siero5335)

・Rで本を作りたい(前田和寛さん)

Rで本を作りたい

・28歳でプログラミングを始めた話(市川太祐さん)

・医療関連のアプリ開発でデータサイエンスを駆使しようとしているそうです。

スライド未公開です。
スライドがシェアされ次第載せます。

・LDA-Visパッケージのご紹介(@doradora09)

・【e2d3R】E2D3からDot-Bar-Chartのご紹介(楠本一哲さん)

スライドは未公開です。
E2D3をRで表示する試みのようです。
Experiments with e2d3 in R

・このIRのグラフがすごい!上場企業2016(@ito_yan)

スライド未公開です。後日シェアしていただけるようです。

・Rでカルマンフィルタをしたい(@tetsuroito)

・PPAP(仮)(@yutannihilation)

・スライド未公開、ユーザーの状態遷移に関する分析のお話(@sanoche16)

スライドがシェアされ次第載せます。

・私とR(高栁慎一さん)

RjpWiki
統計・データ解析
統計解析フリーソフト R の備忘録頁 ver.3.1
seekR(R限定の検索エンジン)
からだにいいもの
アブラタニブログってなんでしょう。油谷さんのブログ?

・めくってもめくってもサンプル画像(服部恵美さん)

Rのサンプルコードはあるけれども、どんな図ができるのかはわからない。そこで、サンプルコードとグラフを大量にまとめているサイトを作ったそうです。検索性は未知数ですが、暇なときに眺めておきたいですね。
R Graphical Manual

・木と電話と選挙(causalTree)(安井翔太さん)

・スライド未公開、dplyrの話(@tomomoto)

スライドがシェアされ次第載せます。

・てかLINEやってる?(仮)(@wonder_zone)

・心理学における「再現性」の問題とBayes Factor(@NSushi)

スライドは後日公開とのことです。

統計的因果推論に関するスライドとRのサンプルコード

導入・入門から実践までのスライドと実践するためのコードを載せています。因果推論を実務でカジュアルに使えるまで上達させたいものです。

以下、
・統計的因果推論に関するスライド
・資料
・用語整理
・統計的因果推論に関するRの実行例
・書籍情報
からなります。

統計的因果推論に関するスライド

統計的因果推論の学習を進める上でのヒントが記されていると思われるスライドです。カジュアルに回帰分析を行うことに関する注意も書かれています。

因果推論の歴史や利用することのモチベーションが非常にわかりやすく書かれています。
多重共線性を引き合いに出していたりしているのも理解が捗ります。

以下の2つは星野先生の『調査観察データの統計科学』通称赤本の1~3章に関するスライドです。

Rによる実践に関してのスライドです。コードが書かれているので実行してみると良いでしょう。

傾向スコアの計算をRで実践しているスライドです。

資料

こちらの資料は定義が書かれていて助かります。
2016/01/23 (Sat) 第 3 回因果推論を学ぶ会

こちらは論文や教科書の紹介もしています。
プロペンシティスコア(Propensity score; PS)(1)-PSの正しい使い方

カーネギーメロン大学の機械学習における因果推論に関しての講義資料です。
Lecture Notes 17 Causal Inference

Googleのハル・バリアンがまとめたペーパーも良いです。
Causal Inference in Economics and Marketing

用語整理

    ATE(Average Treatment Effect:平均処置効果(因果効果))
    例で述べるとするならば、母集団全てのユーザーにバナーを見せた場合のブランド名検索による訪問数の平均と、全てのユーザーにバナーを見せなかった場合のブランド名検索による訪問数の平均の差として表されます。バナーを見てしまったユーザーにとって、バナーを見なかったら、という反実仮想なデータは当然存在しないので、そのままでは計算できません。ただし、RCT(Randomized Control Trial)、無作為化比較対照実験、の状況ではバイアスなく推定できるとされています。RCTなケースは限られていると思いますが。
    ATT(Average Treatment Effect on the Treated:処置群における平均処置効果)
    バナーを見せたユーザーにおける、バナーを見せた場合と見せなかった場合の差の期待値。マーケティングにおける施策のROIを計算する際に使うことが望ましいとされています。ATEと同じくRCTにおいてバイアスなく推定できるとされています。
    ATU(Average Treatment Effect on the Untreated:対照群における平均処置効果)
    バナーを見せていないユーザーにおける、バナーを見せた場合と見せなかった場合の差の期待値。マーケティング施策を拡大させるか否かを判断する際に使うことができます。ATEと同じくRCTにおいてバイアスなく推定できるとされています。
    強い意味での無視可能性
    共変量に対し求める強い仮定のことで、「バナーを見たか見てないかのバイナリーな変数」や「ブランド名検索での訪問数」などに影響を与えるような共変量に対し、共変量自体で条件をつけて期待値をとると、「バナーを見たか見てないかのバイナリーな変数」と「潜在的なブランド名検索での訪問数」が独立するような特徴が求められています。「バナーを見たか見てないかのバイナリーな変数」が「過去のサイト訪問数(共変量)」や「特定ページへの接触(共変量)」で、配信対象を割り振られている場合は、そのバイナリーな変数は「潜在的なブランド名検索での訪問数」に影響を与えないとされています。
    マッチング
    バナーを見せられたユーザーの持つ、共変量(サイトへの訪問数や、見たページのカテゴリなど)の値と同じ(完全マッチング)、あるいは近い(距離を使ったマッチング)共変量を持っているが、バナーを見せられていない他のユーザーを「同じ人」と見なして、「バナーを見た・見てない」の与える「ブランド名検索での訪問数」への因果効果を推定します。
    傾向スコア(Propensity score)
    処置への割り当ての確率。つまり、上述の例でいうところの、バナーを見せられる確率。確率なので、当然0〜1の間の値をとります。推定には2項ロジットモデルが使われているようです。真の傾向スコアを推定できれば、ATE・ATT・ATUを計算することが可能になるそうです。この理屈はベイズの定理より導くことができるようです。詳しくは資料の”第 3 回因果推論を学ぶ会”を見てみてください。

統計的因果推論に関するRの実行例

“Rで学ぶ 傾向スコア解析入門 – 無作為割り当てが出来ない時の因果効果推定”で紹介されていたコードを以下に掲載します。

書籍情報

データ分析の力 因果関係に迫る思考法 (光文社新書)
「原因と結果」の経済学―――データから真実を見抜く思考法
岩波データサイエンス Vol.3
調査観察データの統計科学―因果推論・選択バイアス・データ融合 (シリーズ確率と情報の科学)